14 research outputs found

    Une rencontre entre les noyaux de graphes et la détection d’anomalies dans les réseaux

    Get PDF
    International audienceLa dĂ©tection d’anomalies demeure une tĂąche cruciale pour assurer une gestion efficace et flexible d’un rĂ©seau. RĂ©cemment, les noyaux de graphes ont connu un grand succĂšs dans de nombreux domaines, notamment en bio-informatique et vision artificielle. Notre travail vise Ă  Ă©tudier leur pouvoir de discrimination dans le domaine des rĂ©seaux afin de dĂ©tecter les vulnĂ©rabilitĂ©s et catĂ©goriser le trafic. Dans cet article, nous prĂ©sentons Nadege, un systĂšme d’apprentissage Ă  l’intĂ©rieur duquel nous concevons un nouveau noyau de graphe adaptĂ© au profilage de rĂ©seaux. De surcroĂźt, nousproposons des algorithmes avec des garanties d’approximation thĂ©oriques ainsi qu’une politique de dĂ©tection hybride. Finalement, nous Ă©valuons les performances de Nadege en menant des expĂ©riences approfondies sur une variĂ©tĂ© d’environnements rĂ©seaux. Pour diffĂ©rents scĂ©narios, nous montrons son efficacitĂ© Ă  empĂȘcher les anomalies de perturber le rĂ©seau tout en fournissant une assistance pour la surveillance du trafic

    Nadege: When Graph Kernels meet Network Anomaly Detection

    Get PDF
    International audienceWith the continuous growing level of dynamicity, heterogeneity, and complexity of traffic data, anomaly detection remains one of the most critical tasks to ensure an efficient and flexible management of a network. Recently, driven by their empirical success in many domains, especially bioinformatics and computer vision, graph kernels have attracted increasing attention. Our work aims at investigating their discrimination power for detecting vulnerabilities and distilling traffic in the field of networking. In this paper, we propose Nadege, a new graph-based learning framework which aims at preventing anomalies from disrupting the network while providing assistance for traffic monitoring. Specifically, we design a graph kernel tailored for network profiling by leveraging propagation schemes which regularly adapt to contextual patterns. Moreover, we provide provably efficient algorithms and consider both offline and online detection policies. Finally, we demonstrate the potential of kernel-based models by conducting extensive experiments on a wide variety of network environments. Under different usage scenarios, Nadege significantly outperforms all baseline approaches

    Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation

    Get PDF
    Let r≄1\mathcal{r} ≄ 1 be any non negative integer and let G=(V,E)G = (V, E) be any undirected graph in which a subset D⊆VD ⊆ V of vertices are initially infected. We consider the following process in which, at every step, each non-infected vertex with at least r\mathcal{r} infected neighbours becomes and an infected vertex never becomes non-infected. The problem consists in determining the minimum size sr(G)s_r (G) of an initially infected vertices set DD that eventually infects the whole graph GG. Note that s1(G)s_1 (G) = 1 for any connected graph GG. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that s1(G)=1s_1(G) = 1 for any connected graph GG. The case when GG is the n×nn × n grid Gn×nG_{n×n} and r=2\mathcal{r} = 2 is well known and appears in many puzzles books, in particular due to the elegant proof that shows that s2(Gn×n)s_2(G_{n×n}) = nn for all nn ∈ N\mathbb{N}. We study the cases of square grids Gn×nG_{n×n} and tori Tn×nT_{n×n} when r\mathcal{r} ∈ {3, 4}. We show that s3(Gn×n)s_3(G_{n×n}) = ⌈n2+2n+43⌉\lceil\frac{n^2+2n+4}{3}\rceil for every nn even and that ⌈n2+2n3⌉\lceil\frac{n^2 +2n}{3}\rceil ≀ s3(Gn×n)s_3(G_ {n×n}) ≀ ⌈n2+2n3⌉\lceil\frac{n^2 +2n}{3}\rceil + 1 for any nn odd. When nn is odd, we show that both bounds are reached, namely s3(Gn×n)s_3(G_{n×n}) = ⌈n2+2n3⌉\lceil\frac{n^2 +2n}{3}\rceil if nn ≡ 5 (mod 6) or nn = 2p^p − 1 for any pp ∈ N∗\mathbb{N}^*, and s3(Gn×n)s_3(G_{n×n}) = ⌈n2+2n3⌉\lceil\frac{n^2 +2n}{3}\rceil + 1 if nn ∈ {9, 13}. Finally, for all nn ∈ N\mathbb{N}, we give the exact expression of s4(Gn×n)s_4(G_{n×n}) and of sr(Tn×n)s_r(T_{n×n}) when r\mathcal{r} ∈ {3, 4}

    A multidimensional colored packing approach for network slicing with dedicated protection

    Get PDF
    International audienceNetwork Function Virtualization (NFV) enables the virtualization of core-business network functions on top of a NFV infrastructure. NFV has gained an increasing attention in the telecommunication field these last few years. Virtual network functions (VNFs) can be represented by a set of virtual network function components (VNFCs). These VNFCs are typically designed with a redundancy scheme and need to be deployed against failures of, e.g., compute servers. However, such deployment must respect a particular resiliency mechanism for protection purposes. Therefore, choosing an efficient mapping of VNFCs to the compute servers is a challenging problem in the optimization of the software-defined, virtualization-based next generation of networks. In this paper, we model the problem of reliable VNFCs placement under anti-affinity constraints using several optimization techniques. A novel approach based on an extension of bin packing is proposed. We perform a comprehensive evaluation in terms of performance under realworld ISP networks along with synthetic traces. We show that our methods can calculate rapidly efficient solutions for large instances

    Revisiting the Random Subset Sum Problem

    Get PDF
    International audienceThe average properties of the well-known Subset Sum Problem can be studied by the means of its randomised version, where we are given a target value zz, random variables X1,
,XnX_1, \ldots, X_n, and an error parameter Δ>0\varepsilon > 0, and we seek a subset of the XiX_i's whose sum approximates zz up to error Δ\varepsilon.In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size O(log⁥(1/Δ))\mathcal{O}\left(\log (1/\varepsilon)\right) suffices to obtain, with high probability, approximations for all values in [−1/2,1/2][-1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools, in the hope of disseminating it even further

    Reconfiguring Network Slices at the Best Time With Deep Reinforcement Learning

    Get PDF
    International audienceThe emerging 5G induces a great diversity of use cases, a multiplication of the number of connections, an increase in throughput as well as stronger constraints in terms of quality of service such as low latency and isolation of requests. To support these new constraints, Network Function Virtualization (NFV) and Software Defined Network (SDN) technologies have been coupled to introduce the network slicing paradigm. Due to the high dynamicity of the demands, it is crucial to regularly reconfigure the network slices in order to maintain an efficient provisioning of the network. A major concern is to find the best frequency to carry out these reconfigurations, as there is a tradeoff between a reduced network congestion and the additional costs induced by the reconfiguration. In this paper, we tackle the problem of deciding the best moment to reconfigure by taking into account this trade-off. By coupling Deep Reinforcement Learning for decision and a Column Generation algorithm to compute the reconfiguration, we propose Deep-REC and show that choosing the best time during the day to reconfigure allows to maximize the profit of the network operator while minimizing the use of network resources and the congestion of the network. Moreover, by selecting the best moment to reconfigure, our approach allows to decrease the number of needed reconfigurations compared to an algorithm doing periodic reconfigurations during the day

    Foundations of networks towards AI

    No full text
    Le domaine de l'Intelligence Artificielle (IA) a un large impact sur la sociĂ©tĂ© d'aujourd'hui, ayant conduit notamment Ă  une interaction passionnante entre plusieurs disciplines scientifiques. À cet Ă©gard, un double intĂ©rĂȘt Ă©merge dans la littĂ©rature.D'une part, une tendance croissante dans les rĂ©seaux de tĂ©lĂ©communication consiste Ă  revisiter les problĂšmes d'optimisation classiques en utilisant des techniques d'apprentissage automatique afin d'exploiter leurs avantages potentiels. Nous nous focaliserons sur certains dĂ©fis posĂ©s par la dĂ©tection d'anomalies dans les rĂ©seaux ainsi que l'allocation des ressources dans le cadre des rĂ©seaux logiciels (SDN) et de la virtualisation des fonctions rĂ©seau (NFV). D'autre part, un effort substantiel a Ă©tĂ© consacrĂ© dans le but d'apporter une comprĂ©hension thĂ©orique du comportement collectif des rĂ©seaux. Nous nous focaliserons sur certains dĂ©fis posĂ©s par l'Ă©tude de la dynamique majoritaire au sein des systĂšmes multi-agents ainsi qu'Ă  la compression des rĂ©seaux de neurones artificiels dans le but d'augmenter leur efficacitĂ©.Dans cette Ă©tude, nous contextualisons les points focaux ci-dessus dans le cadre de l'Ă©tude de certains fondements de rĂ©seaux; vus sous l'angle des rĂ©seaux de tĂ©lĂ©communications et des rĂ©seaux neuronaux. Nous nous concentrons d'abord sur le dĂ©veloppement de mesures de similaritĂ© de graphes pour la dĂ©tection d'anomalies dans les rĂ©seaux. Ensuite, nous Ă©tudions la dynamique majoritaire dĂ©terministe et stochastique dans les systĂšmes multi-agents. Ensuite, nous discutons du problĂšme de la somme de sous-ensembles alĂ©atoires dans le contexte de la compression des rĂ©seaux neuronaux. Enfin, nous passons en revue quelques problĂšmes gĂ©nĂ©raux divers.The field of Artificial Intelligence (AI) has brought a broad impact on today's society, leading to a gripping interaction between several scientific disciplines. In this respect, there has been a strong twofold interest across the literature.On the one hand, a growing trend in telecommunication networks consists in revisiting classic optimization problems using machine learning techniques in order to exploit their potential benefits. We focus on some challenges brought by the detection of anomalies in networks, and the allocation of resources within software-defined networking (SDN) and network function virtualization (NFV).On the other hand, a substantial effort has been devoted towards the theoretical understanding of the collective behavior of networks. We focus on some challenges brought by the study of majority dynamics within multi-agent systems, and the compression of artificial neural networks with the aim at increasing their efficiency.In this study, we contextualize the above focal points in the framework of investigating some foundations of networks; viewed through the lens of telecommunications networks and neural networks. We first focus our attention on developing graph similarity measures for network anomaly detection. Next, we study deterministic and stochastic majority dynamics in multi-agent systems. Then, we discuss the random subset sum problem in the context of neural network compression. Finally, we walk through some other miscellaneous problems

    Fondements réseaux et l'IA

    No full text
    The field of Artificial Intelligence (AI) has brought a broad impact on today's society, leading to a gripping interaction between several scientific disciplines. In this respect, there has been a strong twofold interest across the literature.On the one hand, a growing trend in telecommunication networks consists in revisiting classic optimization problems using machine learning techniques in order to exploit their potential benefits. We focus on some challenges brought by the detection of anomalies in networks, and the allocation of resources within software-defined networking (SDN) and network function virtualization (NFV).On the other hand, a substantial effort has been devoted towards the theoretical understanding of the collective behavior of networks. We focus on some challenges brought by the study of majority dynamics within multi-agent systems, and the compression of artificial neural networks with the aim at increasing their efficiency.In this study, we contextualize the above focal points in the framework of investigating some foundations of networks; viewed through the lens of telecommunications networks and neural networks. We first focus our attention on developing graph similarity measures for network anomaly detection. Next, we study deterministic and stochastic majority dynamics in multi-agent systems. Then, we discuss the random subset sum problem in the context of neural network compression. Finally, we walk through some other miscellaneous problems.Le domaine de l'Intelligence Artificielle (IA) a un large impact sur la sociĂ©tĂ© d'aujourd'hui, ayant conduit notamment Ă  une interaction passionnante entre plusieurs disciplines scientifiques. À cet Ă©gard, un double intĂ©rĂȘt Ă©merge dans la littĂ©rature.D'une part, une tendance croissante dans les rĂ©seaux de tĂ©lĂ©communication consiste Ă  revisiter les problĂšmes d'optimisation classiques en utilisant des techniques d'apprentissage automatique afin d'exploiter leurs avantages potentiels. Nous nous focaliserons sur certains dĂ©fis posĂ©s par la dĂ©tection d'anomalies dans les rĂ©seaux ainsi que l'allocation des ressources dans le cadre des rĂ©seaux logiciels (SDN) et de la virtualisation des fonctions rĂ©seau (NFV). D'autre part, un effort substantiel a Ă©tĂ© consacrĂ© dans le but d'apporter une comprĂ©hension thĂ©orique du comportement collectif des rĂ©seaux. Nous nous focaliserons sur certains dĂ©fis posĂ©s par l'Ă©tude de la dynamique majoritaire au sein des systĂšmes multi-agents ainsi qu'Ă  la compression des rĂ©seaux de neurones artificiels dans le but d'augmenter leur efficacitĂ©.Dans cette Ă©tude, nous contextualisons les points focaux ci-dessus dans le cadre de l'Ă©tude de certains fondements de rĂ©seaux; vus sous l'angle des rĂ©seaux de tĂ©lĂ©communications et des rĂ©seaux neuronaux. Nous nous concentrons d'abord sur le dĂ©veloppement de mesures de similaritĂ© de graphes pour la dĂ©tection d'anomalies dans les rĂ©seaux. Ensuite, nous Ă©tudions la dynamique majoritaire dĂ©terministe et stochastique dans les systĂšmes multi-agents. Ensuite, nous discutons du problĂšme de la somme de sous-ensembles alĂ©atoires dans le contexte de la compression des rĂ©seaux neuronaux. Enfin, nous passons en revue quelques problĂšmes gĂ©nĂ©raux divers

    Fondements réseaux et l'IA

    No full text
    The field of Artificial Intelligence (AI) has brought a broad impact on today's society, leading to a gripping interaction between several scientific disciplines. In this respect, there has been a strong twofold interest across the literature.On the one hand, a growing trend in telecommunication networks consists in revisiting classic optimization problems using machine learning techniques in order to exploit their potential benefits. We focus on some challenges brought by the detection of anomalies in networks, and the allocation of resources within software-defined networking (SDN) and network function virtualization (NFV).On the other hand, a substantial effort has been devoted towards the theoretical understanding of the collective behavior of networks. We focus on some challenges brought by the study of majority dynamics within multi-agent systems, and the compression of artificial neural networks with the aim at increasing their efficiency.In this study, we contextualize the above focal points in the framework of investigating some foundations of networks; viewed through the lens of telecommunications networks and neural networks. We first focus our attention on developing graph similarity measures for network anomaly detection. Next, we study deterministic and stochastic majority dynamics in multi-agent systems. Then, we discuss the random subset sum problem in the context of neural network compression. Finally, we walk through some other miscellaneous problems.Le domaine de l'Intelligence Artificielle (IA) a un large impact sur la sociĂ©tĂ© d'aujourd'hui, ayant conduit notamment Ă  une interaction passionnante entre plusieurs disciplines scientifiques. À cet Ă©gard, un double intĂ©rĂȘt Ă©merge dans la littĂ©rature.D'une part, une tendance croissante dans les rĂ©seaux de tĂ©lĂ©communication consiste Ă  revisiter les problĂšmes d'optimisation classiques en utilisant des techniques d'apprentissage automatique afin d'exploiter leurs avantages potentiels. Nous nous focaliserons sur certains dĂ©fis posĂ©s par la dĂ©tection d'anomalies dans les rĂ©seaux ainsi que l'allocation des ressources dans le cadre des rĂ©seaux logiciels (SDN) et de la virtualisation des fonctions rĂ©seau (NFV). D'autre part, un effort substantiel a Ă©tĂ© consacrĂ© dans le but d'apporter une comprĂ©hension thĂ©orique du comportement collectif des rĂ©seaux. Nous nous focaliserons sur certains dĂ©fis posĂ©s par l'Ă©tude de la dynamique majoritaire au sein des systĂšmes multi-agents ainsi qu'Ă  la compression des rĂ©seaux de neurones artificiels dans le but d'augmenter leur efficacitĂ©.Dans cette Ă©tude, nous contextualisons les points focaux ci-dessus dans le cadre de l'Ă©tude de certains fondements de rĂ©seaux; vus sous l'angle des rĂ©seaux de tĂ©lĂ©communications et des rĂ©seaux neuronaux. Nous nous concentrons d'abord sur le dĂ©veloppement de mesures de similaritĂ© de graphes pour la dĂ©tection d'anomalies dans les rĂ©seaux. Ensuite, nous Ă©tudions la dynamique majoritaire dĂ©terministe et stochastique dans les systĂšmes multi-agents. Ensuite, nous discutons du problĂšme de la somme de sous-ensembles alĂ©atoires dans le contexte de la compression des rĂ©seaux neuronaux. Enfin, nous passons en revue quelques problĂšmes gĂ©nĂ©raux divers

    Biased Majority Opinion Dynamics: Exploiting graph kk-domination

    No full text
    International audienceWe study opinion dynamics in multi-agent networks where agents hold binary opinions and are influenced by their neighbors while being biased towards one of the two opinions, called the superior opinion. The dynamics is modeled by the following process: at each round, a randomly selected agent chooses the superior opinion with some probability α, and with probability 1 − α it conforms to the opinion manifested by the majority of its neighbors. In this work, we exhibit classes of network topologies for which we prove that the expected time for consensus on the superior opinion can be exponential. This answers an open conjecture in the literature. In contrast, we show that in all cubic graphs, convergence occurs after a polynomial number of rounds for every α. We rely on new structural graph properties by characterizing the opinion formation in terms of multiple domination, stable and decreasing structures in graphs, providing an interplay between bias, consensus and network structure. Finally, we provide both theoretical and experimental evidence for the existence of decreasing structures and relate it to the rich behavior observed on the expected convergence time of the opinion diffusion model
    corecore